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We consider a classical interacting dimer model which interpolates between the square lattice case and the
triangular lattice case by tuning a chemical potential in the diagonal bonds. The interaction energy simply
corresponds to the number of plaquettes with parallel dimers. Using transfer matrix calculations, we find in the
anisotropic triangular case a succession of different physical phases as the interaction strength is increased: a
short-range disordered liquid dimer phase at low interactions, then a critical phase similar to the one found for
the square lattice, and finally a transition to an ordered columnar phase for large interactions. Our results
indicate that criticality and nonbipartiteness are compatible in a dimer model. For the isotropic triangular case,
we have indications that the system undergoes a first-order phase transition to an ordered phase, without
appearance of an intermediate critical phase.
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I. INTRODUCTION

Dimer models have regained a lot of interest in the con-
densed matter physics community thanks to the pioneering
work of Rokhsar and Kivelson �RK� �1�. In this original
proposal, dimers represent singlets formed by pairs of spins
1/2 in cuprate materials or frustrated antiferromagnetic sys-
tems. This idea has been followed by many other proposals
giving rise, at low energy, to such kinds of effective models.
To cite only a few connections to the physics of dimers,
related again to magnetism, the lowest-energy configurations
of fully frustrated Ising magnets can generally be mapped
onto dimer configurations on the dual lattice �2,3�. Other
specific �quantum� dimer models have recently been derived
from a spin-orbital model describing LiNiO2 �4�, from the
trimerized kagomé antiferromagnet �5�, or for Heisenberg
antiferromagnets under applied field in the pyrochlore lattice
�6�. Last, we note that hard-core bosons or correlated fermi-
ons on frustrated lattices like the planar pyrochlore lattice
can also be mapped onto dimer representations in the limit of
large Coulomb repulsion �7,8�.

Although the RK model is quantum mechanical, there is a
special value of the parameters of the Hamiltonian for which
the ground state is an equal-weight superposition of all dimer
tilings of the square lattice �RK point�. Static properties at
zero temperature can then be understood by the purely com-
binatorial problem of counting dimer tilings of the square
lattice first solved in the early 1960s �9�. This system turns
out to be a critical model and, more precisely, a conformal
field theory with central charge c=1. Subsequently to the RK
work, Moessner and Sondhi �10� have shown that the same
dimer model on the triangular lattice shows, instead of a
single point with critical algebraic correlations, a disordered
phase with short-range dimer correlations, as expected from
the known physics of its classical counterpart �11�. From the
interpretation originally given to the dimers, it is legitimate
to call this phase a spin liquid.

More recently, a study performed by Alet et al. �12� on a
square lattice classical dimer model showed the existence of
a Kosterlitz-Thouless phase transition from a critical phase
to a columnar ordered phase for the dimers. This transition is

triggered by including an interaction term, counting the num-
ber of plaquettes doubly occupied by parallel dimers. Subse-
quently, a quantum mechanical dimer model can be built
from this classical model, proving that the single point show-
ing criticality in the original RK Hamiltonian can be pro-
moted to a whole critical phase �13,14�.

An important difference between the square and the trian-
gular lattices for quantum dimer models lies in the degen-
eracy of the ground state at the RK point: it is finite for the
triangular lattice with periodic boundary conditions �PBCs�
and scales exponentially with linear size for the square lattice
with the same PBC �see Refs. �10,1�, respectively, for de-
tails�. This large degeneracy of the square lattice, related to
its bipartiteness, could naively be associated with the exis-
tence of a critical phase in this case. It is then natural to
investigate the behavior of an interacting dimer model on
nonbipartite lattices interpolating between the square and tri-
angular lattices and, in particular, to try to obtain insight into
the interplay between criticality and bipartiteness. In the non-
interacting case, it is found �11� that criticality disappears
immediately with the introduction of nonbipartite dimers.

In this paper we study an extension of the classical dimer
model with nearest-neighbor interactions already studied
elsewhere �12,13� to the case of an anisotropic triangular
lattice. Although a limiting case of this model is the square
lattice, in general the lattice is nonbipartite. In Sec. II we
start by reviewing the results on the square lattice and recall-
ing the principles of an associated field theory used to de-
scribe the critical phase. In Sec. III, we investigate the prop-
erties of the anisotropic model that interpolates between the
square and triangular lattices by means of transfer matrix
calculations. There are two independent paths for the inter-
polation: the introduction of a fugacity for diagonal bonds
but also of the introduction of interactions between parallel
dimers on diamondlike plaquettes �see Fig. 1�. We find for a
certain range of parameters the existence of a critical phase.
We determine its location in the phase diagram as well as
transitions from it to either the liquid or ordered phase. In
Sec. IV, we find that the isotropic model on the triangular
lattice does not possess a critical phase for any interaction
strength but could display an ordered phase for sufficiently
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large interactions. Finally, Sec. V contains a discussion of the
various results and conclusions.

II. CRITICALITY OF THE DIMER MODEL ON THE
BIPARTITE SQUARE LATTICE

Let us start by reviewing the main results of the square
lattice dimer model. In this paper, we will only consider fully
packed dimers with a hard-core constraint: there must be one
and only one dimer coming out of each site. The noninter-
acting model can be solved exactly on the square lattice by
expressing the partition function of the system as a Pfaffian,
which enables one to obtain analytic expressions for the free
energy and correlators, in either finite or infinite systems
�9,15�. On the square lattice, dimers are found to be in a
critical phase: dimer-dimer correlations decay algebraically
as 1/r2 with relative distance r, whereas the monomer-
monomer �defining a monomer as a site with no dimer� cor-
relations behave as 1/�r. Classical dimers on the square lat-
tice have also been studied within a finite-temperature model
with nearest-neighbor interactions—i.e., an interaction −u
between parallel dimers on the same plaquette �u�0 corre-
sponding to attractive interactions� �12�. Here the model is
not integrable anymore and it was found numerically that the
system is critical down to a finite temperature ucol /T
=1.54�3�, where it gives rise to a low-temperature columnar
phase with dimers aligned in columns. Monomer-monomer
correlations decay to 0 at long distances, either algebraically
�in the critical phase� or exponentially �in the columnar
phase�. From now on, unless it is specified otherwise, we set
T=1 and let the different dimer-dimer interactions �u for the
purely square lattice� vary. Nevertheless, we still refer to
high-T �low-T� regions characterized by small �large� values
of the involved couplings.

The criticality encountered in the high-T phase can be
understood in the framework of a height field theory. For
each dimer configuration on the square lattice, a scalar height
field with quantized values �multiples of 1

4 � can be defined
microscopically on the dual lattice �16�. The spatial varia-
tions of the height field between neighboring sites of the dual
lattice are entirely determined by the presence of dimers be-
tween them, thanks to the lattice bipartiteness. The long-
wavelength modes of this height correspond to a coarse-

grained height field ��r� defined in continuum space, and
the physics of the model is captured by the action �12,17�

S��� =� d2r g�����r��2 + V cos�2�p��r�� . �2.1�

The cosine term of this action is a locking potential that
favors p flat configurations �p=4 for the square lattice�, cor-
responding microscopically to the columnar configurations.
The ����2 term, corresponding to the cost of fluctuations
around these flat configurations, accounts for the entropy of
dimer coverings. In the noninteracting case, the value of the
stiffness is fixed by the exact results of Refs. �9,15� to be g
= 1

2 �see also Ref. �18��. The effect of attractive nearest-
neighbor interactions is to renormalize the stiffness g to a
value increasing with u.

As long as the cosine operator in Eq. �2.1� is irrelevant in
the renormalization group sense, this action defines a confor-
mal field theory with central charge c=1 and the system is
critical. The dimer operator, which gives the local dimer den-
sity, is composed of cos�2��� and gradient terms �19�; for
attractive interactions �where g�1/2� the cosine term is the
dominant one in the dimer operator, which has then a scaling
dimension 1/2g. Physically, d1,0 corresponds to half of the
exponent of dimer-dimer correlations. Similarly, the locking
potential has a dimension dp,0= p2

2g = 8
g and becomes relevant

when g�4. Within the standard Coulomb gas description
�20� of this theory, we can define operators corresponding to
the insertion of a particle of electric and magnetic charges e
and m, respectively. In general, the dimension of such an
electromagnetic vertex operator is de,m= e2

2g + gm2

2 . In the
height model discussed here, the operator with �e ,m�
= �1,0� is the dimer operator already mentioned; similarly,
the monomer operator corresponds to inserting a magnetic
particle with �e ,m�= �0, ±1� �the sign of the charge depends
on the sublattice where the monomer is inserted�. In the criti-
cal phase, dimer-dimer and monomer-monomer correlators
decay as power laws of the distance and the decay exponents
are 2d1,0 and 2d0,1, respectively. Going back to the height
picture, the insertion of magnetic charges �for instance,
monomers or links breaking the bipartiteness� corresponds to
dislocations and, as we show below, can be treated as pertur-
bations in the coarse-grained field theory.

Prior to the presentation of our strategy to attack the
dimer problem, we first introduce the numerical techniques
used here and illustrate them in the example of the square
lattice interacting dimer model. In this study we use a trans-
fer matrix �TM� approach to determine the domains of exis-
tence of the different phases of the dimer model, computed
on a torus of longitudinal and transverse sizes L� and L,
respectively. The TM techniques allow us to compute expo-
nents of critical dimer-dimer and monomer-monomer corre-
lations and also correlations themselves �see the Appendix�,
on systems with L� large enough to be considered infinite.

For a critical phase such as the one encountered in the
high-T region of the square lattice dimer model, we can com-
pute the decay exponents of correlation functions in two
ways: either by a direct inspection of the real-space decay of
correlation functions �see the description in Appendix� or by
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FIG. 1. �Color online� Dimer models �a� on the square lattice,
with dimer interactions u on square plaquettes; �b� on an anisotropic
triangular lattice, with dimer interactions u and v on square and
diamondlike plaquettes, respectively, and a fugacity zD for dimers
on diagonal links.
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the leading eigenvalues of the TM �see Appendix�. Both
methods are guided by a conformal field theory �CFT� analy-
sis of the critical phase, and the latter is more precise to
determine exponents as it allows one to use efficiently topo-
logical and translation symmetries of the TM �see Appen-
dix�. The calculations of correlation functions in real space
offer, however, the advantage of providing more physical
information �for example, about the correlation length� when
the system is not critical. Another important quantity—
namely, the central charge c of the CFT—can also be ex-
tracted from the finite-size scaling of the TM largest eigen-
value when the system is critical �see Appendix�.

We illustrate the validity of this numerical approach in
Fig. 2, where the critical phase is evidenced by the c=1
plateau of the central charge �estimated using TM largest
eigenvalues for system widths up to L=14�. The scaling di-
mensions of dimer d1,0 and monomer d0,1 operators �obtained
from subleading eigenvalues� are also displayed according to
the discussion above; the transition to the columnar phase is
characterized by a value g=4 of the stiffness, thus a value
d1,0=1/8. This criterion is used to estimate the transition
temperature �estimates of d0,1 can also be used in principle,
but they are more sensitive to finite-size effects in that tem-
perature range�. The results of Fig. 2 lead to an estimate
ucol=1.563�7�, in good agreement with previous results
�12,13�.

III. CRITICAL PHASE IN A DIMER MODEL
INTERPOLATING THE SQUARE AND TRIANGULAR

LATTICES

In this section, we investigate whether the bipartiteness of
the square lattice is a condition for the existence of the criti-
cal phase by building a model defined on a lattice interpolat-
ing continuously between the square and the triangular lat-
tices.

Definition of a model with lattice and interaction
anisotropies. We represent the triangular lattice as a de-
formed square lattice with bonds in the x, �, and �-x direc-

tions �see Fig. 1 and the Appendix�. The interpolation be-
tween both lattices is made by assigning a fugacity zD to the
diagonal bonds. Since the elementary plaquettes of the trian-
gular lattice are more numerous than those of the square, we
need to define another parameter v characterizing the inter-
action on diamondlike plaquettes �i.e., nonsquare four-site
plaquettes�. We finally keep the notation u for the interaction
between parallel dimers on a square plaquette. These el-
ementary energy scales in the problem are illustrated in Fig.
1. For zD=0 and v=0, we have the classical dimer model on
the square lattice discussed in Sec. II, while the pure trian-
gular dimer model �which will be discussed in Sec. IV� cor-
responds to both zD=1 and v /u=1. To describe the system as
a function of these two anisotropy parameters, we take the
approach of varying either zD or v /u while keeping the other
parameter constant. The different paths in the �zD ,v /u� space
where phase diagrams were computed numerically are rep-
resented in Fig. 3.

Description of expected phases and transitions. In the
noninteracting limit �u=v=0� of the present model, the sys-
tem is disordered with exponentially decaying correlations
for any fugacity zD�0: criticality is destroyed by an infini-
tesimal proportion of diagonal bonds �11�. This can be ac-
counted for in the height field theory by adding a relevant
term in the action, Eq. �2.1�, which can be understood by
noticing that adding a single diagonal dimer on the square
lattice corresponds to inserting two monomers on the same
sublattice—i.e., two magnetic charges of the same sign �21�.
The corresponding m=2 vertex operator is written in terms
of the field �, dual to the height field �, and leads to the new
effective action

S��� =� d2r�g����r��2 + V cos�8���r�� − � cos�2��r�� .

�3.1�

A similar �but not equivalent� action appears in a dimer
model where monomers are present, with a finite density
�14�. There the critical domain collapses to a single line of
critical points with continously varying exponents.
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FIG. 2. �Color online� Estimates and extrapolations from differ-
ent estimates �see the Appendix for details and notations� of the
central charge c and of the scaling dimensions d1,0 and d0,1 in the
dimer model on the square lattice as a function of interaction
strength u �in units of T�.
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FIG. 3. �Color online� Different parameter-space paths �A–E�
taken in the TM calculations in Sec. III.
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In the absence of interactions, this new perturbing field
�the cos�2�� term� corresponds to the mass term of the free
Majorana doublet arising in the large-scale regime within the
Pfaffian description of the dimer model �11�. For a generic
value of the stiffness, the scaling dimensions of the two per-
turbing terms are d4,0= 8

9 and d0,2=2g, respectively. The fact
that the introduction of diagonal bonds is indeed relevant in
the noninteracting limit is seen from the value of the stiffness
in this case g= 1

2 �since d0,2=1	2�. However, the key point
of our study is that the cos�2�� term becomes irrelevant for
g�1 whereas the locking potential is relevant only for g
�4. As we can tune the stiffness constant by modifying the
interaction strength between parallel dimers �u and v terms�,
we are hoping to reach the 1	g	4 window—i.e., a critical
phase on the triangular lattice—within the interacting dimer
model defined above �22�.

The predicted phase diagram is therefore as follows: first,
a high-T liquid phase �for 1 /2	g	1 in the unperturbed
model�, then a transition to a critical phase �1	g	4� at
intermediate couplings, and finally a low-T columnar ordered
phase �for g�4�. The dimer d1,0 and monomer d0,1 scaling
exponents are predicted to be both equal to 1/2 at the tran-
sition from the liquid to the critical phase and 1/8 and 2,
respectively, at the critical-columnar transition. In both cases,
transitions out of the critical phase are expected to be of
Kosterlitz-Thouless type. This analysis holds only in the per-
turbative regime for the diagonal dimer fugacity zD
1, and
we now address the question whether this scenario is realized
for an arbitrary lattice anisotropy 0	zD�1 by means of
numerical TM calculations.

Perturbation of the square lattice model by diagonal
bonds. We first consider the model with no additional inter-
actions v=0 and turn on the diagonal dimer fugacity �path A
in Fig. 3�. Our numerical estimates of the central charge c
and exponents d1,0 and d0,1 are displayed in Fig. 4 as a func-
tion of the coupling strength u for the specific value zD
=0.4. We clearly observe the emergence of a c=1 plateau
witnessing a critical phase for a wide range of couplings. The
points u1 and u2 where d1,0=1/2 and d0,1=1/2 correspond
roughly to the high-T limit of the c=1 plateau, as predicted
above; from these criteria, the transition between the critical

and liquid phases is located at u*= �u1+u2� /2=0.80�5�, the
error bar being estimated by �u2−u1� /2. Similarly, the low-T
end of the plateau at ucol=1.566�8�, corresponding to the
entrance into the columnar phase, coincides with the crite-
rion d1,0=1/8, confirming the analysis above. We use esti-
mates of d1,0 to locate the columnar transition, since as in the
square lattice estimates of the monomer exponent d0,1 are
more affected by finite-size effects.

Repeating the same analysis for different values of the
diagonal dimer fugacity, we obtain, as a function of zD and u,
the phase diagram of Fig. 5. The main features are the fol-
lowing: �i� the transition temperature to the columnar phase
is essentially not affected by the diagonal dimer fugacity and
remains close to the value obtained in the square lattice; �ii�
as found in Ref. �11�, the system with no interaction u=0 is
a gapped liquid irrespective of the diagonal dimer fugacity;
�iii� the dimer model �with v=0� comprises a critical phase
even on the isotropic triangular lattice �zD=1�, where it ex-
tends from u*=1.08�5� up to ucol=1.575�10�.

These results are in full agreement with the predictions of
the field-theoretical analysis developed above. We emphasize
also here that the lattice bipartiteness is not a necessary con-
dition to have criticality in a dimer model and that this con-
dition should rather be replaced by a condition on the exis-
tence of a stiffness constant window 1	g	4 in an
unperturbed model.

Introduction of a finite interaction anisotropy v /u. We
now introduce the interaction term v on the diamondlike
plaquettes. The u and v terms are in competition, since they
tend to favor different dimer orderings. When v	u, the
square columnar configurations will eventually dominate at
low enough T, but the presence of the frustrating v interac-
tions will shift down the transition temperature to the ordered
phase. As the algebraic correlations of the critical phase also
correspond to a squarelike columnar ordering at lower tem-
peratures, we also expect the extent of the critical phase to
shrink down as the strength of the v interactions is increased.
From the point of view of the effective action, Eq. �3.1�, we
expect g to decrease with the v frustrating interactions.

For a sufficiently small v /u parameter, the behavior of the
system is found to be identical to the case v=0, with a criti-
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FIG. 4. �Color online� Central charge c, estimates and extrapo-
lations of the dimer exponent d1,0, and monomer exponent d0,1 as a
function of u �in units of T� for a diagonal dimer fugacity zD=0.4
and v=0.
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FIG. 5. �Color online� Phase diagram for v=0 �line A in Fig. 3�
as a function of diagonal dimer fugacity zD and square-plaquette
interaction u �in T units�. Note that on the zD=0 line, the small-u
region also corresponds to a critical phase �dashed line�.
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cal phase, evidenced by a c=1 plateau between the dimer
liquid and ordered phases. This is illustrated in Fig. 6 for
anisotropy parameters �zD ,v /u�= �0.4,0.2�. As expected, the
transition towards the ordered phase is slightly shifted to-
wards lower temperatures �ucol=1.624�8� for v /u=0.2 while
ucol=1.566�8� for v=0�. The high-T boundary of the critical
phase is more strongly affected by the presence of v interac-
tions: for the same lattice anisotropy, u*=0.92�6� for v /u
=0.2 to be compared with 0.80�5� for v=0.

Using the same procedure as before, the transition points
u* and ucol were determined in the regions of the phase dia-
gram corresponding to paths B, C, and D �with, respectively,
v /u=0.2, 0.4, and 0.5� and E �for zD=1�, and the corre-
sponding phase diagrams are reported in Fig. 7. As antici-
pated, we clearly see that the effect of adding the interaction
v is essentially to shift both boundaries of the critical phase
towards lower temperatures: in other words, the frustration
due to the v terms has a net tendency to stabilize the dimer
liquid and to destabilize the ordered �columnar� or quasior-
dered �critical� phase. For a given fugacity zD, the extent of
the critical phase indeed decreases as v /u increases. The
transition between the dimer liquid and the critical phase
turns out to be more affected by v /u than the transition to-
wards the columnar phase. We can interpret this with the
following rough argument: v interactions effectively increase
the weight of diagonal bonds in the dominant configurations,
enhancing the perturbation caused by the diagonal bonds and
therefore decreasing the extent of the critical phase from the
high-T direction.

For large values of v /u, a fair determination of phase
boundaries becomes more difficult as finite-size effects are
becoming more important. For instance, the determination of
u* with either the dimer or monomer exponent criterion gives
values increasingly far from each other, resulting in larger
error bars in the phase diagrams of Figs. 7�c� and 7�d�. In
practice, for v /u�0.5, both our numerical results and the
way of analyzing them break down due to uncontrolled
finite-size effects. This is actually not a surprise, as the CFT-
guided analysis of the TM results �see Appendix� relies on
the existence of an unperturbed critical window in the model,
which is no longer present for large-v interactions. For v /u
�0.5, we also find that the second largest TM eigenvalue is

no more found in the q=� symmetry sector in the low-T
phase. This indicates a change in nature of the lowest-energy
excitations and that the scheme along which criticality was
previously understood is not valid anymore. From these ar-
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FIG. 6. �Color online� Central charge and exponents �estimates
and extrapolations� for an interaction anisotropy v /u=0.2 and diag-
onal dimer fugacity zD=0.4. Interaction strength u is in units of T.
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FIG. 7. �Color online� Phase boundaries u* and ucol �in units of
T� as a function of either zD ��a�, �b�, and �c�� or v /u ��d��, corre-
sponding, respectively, to the paths B, C, D, and E in Fig. 3. Error
bars on ucol are smaller than the symbol size.
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guments and even if our finite-size results become less reli-
able, it is clear that they are no longer compatible with the
existence of an extended critical phase for v /u�0.5: this is
exemplified by the absence of a plateau in the numerical
estimate of the central charge. Finally, we note that in paral-
lel to the shrinking of the critical phase observed when in-
creasing v /u, the columnar transition seems to be progres-
sively shifted towards the T=0 limit as the interaction
anisotropy parameter approaches 1 �see Fig. 7�d��. This is
again in agreement with our previous qualitative arguments
on the effect of v interactions.

IV. DIMER ORDERING ON THE ISOTROPIC
TRIANGULAR LATTICE

We now turn to the more complex situation of the isotro-
pic triangular model, where zD=1 and v=u �in this section,
the isotropic interaction will only be denoted by u�. The
high-T limit is in this case well understood: the system is in
a dimer liquid phase, with exponentially decaying dimer-
dimer and monomer-monomer correlation functions. This
has been shown exactly for u=v=0 in Ref. �11�, and we
could confirm it for small values of the interaction strength.
For intermediate u=v values, as expected from the results of
Sec. III for v /u�0.5, we find no evidence for a critical
phase in our TM calculations �in particular, no c=1 plateau�.

Whereas we always found a low-T columnar ordering up
to now, the low-T behavior of the isotropic triangular model
is revealed to be more complex. Indeed, from the isotropy of
the interactions and since all dimer fugacities are equal, it
appears that configurations that minimize the energy are
more numerous. At first glance, 12 �=6�2� columnar-
ordered ground-state configurations emerge �6 for the num-
ber of ways to put a dimer on a link connected to a given site
and 2 for the possible directions of a dimer column, given an
orientation of dimers�. However, as first remarked in Ref.
�10�, the number of configurations that minimize the energy
is much larger as one can easily create zero-energy defects
by just translating a line of dimers or flipping all dimers
along a column. These two types of moves from a given
columnar ground-state are represented in Fig. 8. The almost
extensive ground-state degeneracy generated by these cost-

less defects clearly changes the picture for the low-T behav-
ior of the isotropic triangular dimer model. Indeed, at T=0,
strictly speaking, the system is no longer ordered with re-
spect to a local order parameter such as the columnar one
defined for the square lattice. However, it is still possible that
at finite T, the thermal fluctuations select a specific ordering
pattern: this would be an illustration of the “order-by-
disorder” effect �23,24�.

In fact, for the quantum dimer model on the triangular
lattice, Moessner and Sondhi found in perturbation theory
�with respect to the quantum kinetic terms� that indeed
�quantum� fluctuations select the 12 ordered columnar states
�10�. Noticing that in our classical model thermal fluctua-
tions play the same role as quantum kinetic fluctuations in
the quantum dimer model �12� since both essentially count
the number of flippable plaquettes in a given state, it is likely
that thermal fluctuations �instead of quantum fluctuations�
trigger a similar order-by-disorder scenario here. From gen-
eral arguments �24�, we expect that if it is indeed the case,
the transition temperature to the columnar phase should be
quite low. It could also happen that, for our specific model,
this transition never occurs and the systems stays in a liquid
phase down to T=0.

We now try to settle this issue with the help of numerical
TM calculations. As the critical phase disappeared, we can
no longer use the CFT-based analysis of the previous sec-
tions and we have to resort to more standard thermodynami-
cal means of detecting the hypothetic transition to a low-T
ordered phase. We first computed dimer-dimer correlations
by TM iterations �see the Appendix�. In Fig. 9, connected
correlation functions are displayed as a function of dimer-
dimer distance r� for the example of a �L� ,L�= �60,6� torus
for interaction strength u up to 5. As exemplified by the
log-linear scale, they are clearly short ranged with an expo-
nential decay �plus an oscillating part depending on the par-
ity of r��. We obtain an estimate of the correlation length 
by fitting the correlations to an exponential decay

L

L

τ

(a) (b)

FIG. 8. �Color online� Different types of zero-energy defects on
the �isotropic� triangular lattice dimer model from a specific colum-
nar ordered ground state: �a� line-shifting modes and �b� column-
flipping modes.
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FIG. 9. �Color online� Connected dimer-dimer correlations as a
function of the distance r� �in lattice units� along the main axis of a
torus of dimensions �L� ,L�= �60,6� for interaction strengths u �in T
units� between 1 and 5. Correlations of vertical �respectively hori-
zontal� dimers are represented by up �down� triangles. For clarity,
we only displayed horizontal �vertical� dimer correlations at odd
�even� distances. Inset: estimated correlation length  �in lattice
units� as a function of u.
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exp�−r� /�. The resulting curve �u�, displayed in the inset
of Fig. 9, shows a well-pronounced peak at a finite value of
u, which could correspond to an ordering temperature. We
also find that the peak positioned at u=1.9�1� for the system
size L=6, shifts towards higher interaction strength u
=2.22�5� for L=8.

Another thermodynamical insight is given by the specific
heat per site, cv= 1

LL�
d�E	 /dT, which is also accessible to the

TM calculations �see Appendix for details�. Figure 10 dis-
plays the specific heat as a function of u for different system
widths L. For each value of L, the specific heat peaks at a
temperature close to that of the �u� curves. As L increases,
the peak in cv�u� sharpens and shifts to lower temperatures.
We discuss below the finite-size scaling of the position of the
peak but already note at this stage that the clear narrowing of
the specific heat peak with increasing system size, conju-
gated with the absence of a power-law envelop, is very sug-
gestive of a first-order phase transition.

Having possible signs of a phase transition, we now try to
find an order parameter for the low-T phase. As already dis-
cussed, this is not a simple task because of the zero-energy
modes that are responsible for the large ground-state degen-
eracy. The specific geometry of the TM is of help here to
characterize the appearance of long-range order. Consider a
very long cylinder L��L�1 with PBCs in the small L di-
rection. With this geometry, the ground states having dimers
perpendicular to the long direction �horizontal dimers� are
much more numerous than ground states with only vertical
or diagonal dimers. Indeed, there are 2L� horizontal ground
states �corresponding to the line-shifting modes; see Fig.
8�a��. The same line-shifting modes provide only a much
smaller �2L� degeneracy for vertical or diagonal ground
states. The other family of low-energy modes �column-
flipping modes� gives a small O�2L/2� degeneracy for the
horizontal ground states �see Fig. 8�b�� and a O�2L�/2� degen-
eracy for both vertical and diagonal ground states. Conse-
quently, in the limit of large L�, we expect horizontal line-
shifting modes to predominate.

If there is long-range order in the system, the previous
analysis indicates that the long cylinder geometry induces a
preferential ordering in the horizontal dimers �for entropic
reasons�. Consequently, we consider the average occupation

of horizontal bonds on a given line of the lattice as a good
indicator of a possible phase transition. At infinite tempera-
ture, occupations of all bonds are all likely and equal to 1/6.
In contrast, from the arguments above, at very low T, the
probability for a horizontal bond to be occupied on an infi-
nitely long cylinder is P−=1/2. Defining

�m	 =
P− − 1/6

1/2 − 1/6
= 3P− −

1

2
,

we expect the “order parameter” �m	 to vanish in the low-
coupling limit u=0 and to saturate to 1 at large enough cou-
pling. Even if, strictly speaking, this above argument is not
rigorous �because L� and L are both finite in our computa-
tions�, we expect �m	 to reflect a true physical behavior. �m	
is shown in Fig. 11 for lattice widths L=4,6 ,8, and we
clearly observe the predicted behavior ��m	 tends to 0 for
small u and saturates to 1 at large couplings—notice that the
negative slope of �m	�u� for u	1.5 and L=8 has no simple
interpretation, but is supposed to be a finite-size effect�. As
for the specific heat data, we observe that the shape of �m	 is
strongly influenced by the system size, with similar trends:
as L increases, the temperature region of ordering �where
d�m	 /du is maximal� is getting narrower and is shifted to-
wards lower temperatures.

In order to have a better understanding of this ordering
phenomenon, we have computed the order parameter �m	
away from the purely isotropic case, for a diagonal dimer
fugacity zD=1 but for values of v /u lower than 1. The evo-
lution of �m	 with u is shown in Fig. 12 for different inter-
action anisotropies v /u=0.4,0.6,0.8,1. As soon as u is
larger than v, the mean occupation of horizontal links P− is
1 /4 at zero temperature, which is consistent with the fact
that, as in the purely square columnar state, only four con-
figurations have the minimal energy. Nevertheless, the order-
ing occurring when u increases is characterized by larger
values of �m	 in an intermediate-temperature range. As v /u
increases, the maximal value of P− gets closer to 1/2, which
is the value found in the ordered phase discussed previously
in the isotropic case. Notice that the extent of the tempera-
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FIG. 10. �Color online� Specific heat per site, cv= 1
LL�

d�E	

dT , as a
function of u �in units of T� for systems of different widths �see the
Appendix for details of the computation�.
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FIG. 11. �Color online� Proposed order parameter �m	 for the
long cylinder geometry �see text� versus coupling strength u �in
units of T� for different lattice sizes. Inset: finite-size transition
temperatures Tc
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ture range where P− approaches 1/2 increases with the
length L� of the system �see v /u=0.6 curves in the Fig. 12�,
which supports the scenario of order by disorder: the P−
=1/2 asymptotic value can be understood by the number
O�2L�� of lowest-energy defects �which are lowest-energy
configurations in the isotropic case�. With interaction aniso-
tropy, these defects are allowed only at finite temperatures
and proliferate down to lower temperatures as u−v de-
creases. This clearly shows that the ordered phase in the
isotropic triangular lattice model differs both qualitatively
and quantitatively �by the number of lowest-energy configu-
rations� from that of its anisotropic version and that the ex-
istence of the former is explained by an order-by-disorder
mechanism.

At this stage, we have three indications �from the corre-
lation length, the specific heat, and �m	� that the isotropic
triangular interacting dimer model could order at low tem-
peratures. In all cases, the transition temperature was seen to
decrease quite consistently with system size. To check
whether the system could order at finite T in the thermody-
namic limit, we perform a finite-size scaling of these effec-
tive transition temperatures. In the inset of Fig. 11, the finite-
size temperature transitions Tc

1�L� and Tc
2�L� corresponding

to, respectively, the maxima of the specific heat and of
d�m	 /du are plotted as a function of inverse transverse sys-
tem size 1/L. A precise finite-size scaling form is difficult to
determine �due noticeably to large error bars�, but all reason-
able finite-size dependences �e.g., linear or quadratic in 1/L�
lead to a finite value of Tc in the thermodynamic limit. A
rough estimate can be made with the help of linear interpo-
lation �dashed line on the figure� and gives Tc=0.2±0.05 �in
units of u�.

Our numerical results therefore seem to be consistent with
a finite-temperature ordering of the isotropic lattice model,
probably triggered by an order-by-disorder mechanism
�23,24�. The sharp behavior of both the specific heat and
“order parameter” at the transition �see Fig. 11�, as well as
the absence of any criticality behavior in the central charge,
suggests that this transition is first order. We finish by noting
that the samples used in the computations are of relatively

moderate size and that it is still possible that the extrapolated
transition temperature actually vanishes with larger samples
available. Another possibility not to be excluded is that the
low-T phase is incommensurate or inhomogeneous, similar
to what is encountered in a quantum dimer model on the
square lattice �25�. On a finite system, this might be evi-
denced by analyzing the low-energy spectrum of the TM. We
found no evidence of this phase in the present study, but
again, the limitations in system sizes do not allow one to
draw definitive conclusions on this issue. To have a better
understanding of the low-T phase and phase transitions, one
could also study the isotropic model on samples with other
geometries and boundary conditions. Another insight could
be given by Monte Carlo simulations for this model. We
expect, however, these simulations to be difficult as the pres-
ence of the low-energy modes �and the corresponding large
degeneracy of the ground state� will certainly induce ergod-
icity and freezing problems in the Monte Carlo process �26�.
Such investigations are beyond the scope of the present pa-
per.

V. CONCLUSIONS

To summarize, we have constructed a simple classical in-
teracting dimer model on a lattice that interpolates between
square and triangular lattices. This is of particular interest
since the two limiting models singularly exhibit very differ-
ent behaviors at infinite temperature �critical and short-
ranged phases for the square and triangular lattices, respec-
tively�. Since the topology of the triangular lattice can be
simply obtained from the square lattice by adding one extra
diagonal bond on each square plaquette, we have introduced
a fugacity parameter for these extra bonds. These extra bonds
lead to new local interactions on diamondlike plaquettes. We
have also considered the effect of dimer interactions on dia-
mondlike plaquettes, differinig from those on the square
plaquettes.

This anisotropic dimer model has been investigated in
great detail using simple considerations as well as numerical
transfer matrix techniques �on strips with up to 14 sites wide�
supplemented by predictions from conformal field theory. A
very rich phase diagram has been obtained with, in particu-
lar, a novel intermediate behavior where the critical phase is
now restricted to a finite intermediate-temperature range and
does not extend, as for the pure square lattice model, up to
infinite temperature. At high temperature, the critical phase is
hence replaced by a liquid dimer phase as in the isotropic
triangular lattice. It is of interest that such a behavior appears
immediately for arbitrary small fugacity of diagonal bonds
so that one can view the typical behavior of the square lattice
as a “singular” limit. However, we note that the critical phase
itself survives in an extended vicinity of the square lattice
model �although its extension in temperature jumps abruptly�
and this stability is therefore not related to the bipartiteness
of the lattice. While the critical phase disappears progres-
sively with increasing interaction anisotropy, the ordered
phase survives for any range of anisotropy, as well as the
high-T liquid dimer. Criticality in this model hence requires
one to have sufficiently anisotropic interactions. These find-
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FIG. 12. �Color online� Average occupation P− of horizontal
bonds computed on a row of an isotropic triangular lattice of di-
mensions L=6 and L�=100 �if not specified� for different interac-
tion anisotropy parameters v

u =0.4,0.6,0.8,1, as a function of inter-
action strength u �in T units�.
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ings are reproduced in the schematic phase diagram of Fig.
13 for the case of isotropic dimer fugacity zD=1. Last, we
have devoted special attention to the limiting case of the
isotropic dimer model on the triangular lattice where we
found evidence of a direct �likely first-order� transition be-
tween the high-T liquid phase and a low-T ordered phase
triggered by an order-by-disorder mechanism.
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APPENDIX: TRANSFER MATRIX ANALYSIS OF THE
ANISOTROPIC DIMER MODEL

Other works �12,13� have already discussed the construc-
tion of the TM for an interacting dimer model. We give a few
technical details related to the triangular lattice and to the
observables studied in the body of the text.

1. One- and two-dimensional dimer configurations

The TM allows to treat a two-dimensional �2D� L�L�

system with periodicity in the transverse direction �x� as a
succession of L� 1D rows of lengths L. In a row at abscissa �
�the � axis being the direction of propagation of the TM�, a
dimer configuration C is specified by the dimer occupation of
horizontal �oriented along ex� links at abscissa � and of ver-
tical and diagonal links connecting sites at abscissa � to sites
at �+1, at relative positions e� and e�−ex, respectively. The
number of such configurations, which is the size of the TM,
is 3L �this number can be evaluated as Tr�ML� where M is a
one-dimensionnal transfer matrix defined between the four
dimer configurations allowed on a triangle, taking into ac-
count the hard-core constraint�.

The topology of the triangular lattice is such that on a
L-wide cylinder, the parity of the number of vertical or diag-
onal dimers linking two successive rows is conserved along
the � axis �assuming that L is even�. This defines two topo-

logical sectors �even and odd�, and the TM is block diagonal
with corresponding blocks Te and To, respectively. We also
use the invariance by translation along the x axis to reduce
the size of T. Translation invariance allows to consider, in-
stead of 3L 1D configurations, only their representatives in a
symmetry sector �defined by the transverse wave vector q�,
from which other configurations are obtained by translations
along ex. Note that the TM elements take into account not
only representatives, but also all configurations connected to
a given representative. These two invariances allow us to
reduce considerably the TM size in various symmetry and
topological sectors. We give in Table I the size of the differ-
ent sectors useful in the following for L up to 14. Values of
nonzero TM elements—i.e., between compatible 1D
configurations—depend on the number of doubly occupied
plaquettes of both types and of diagonal links occupied in
these configurations.

2. Partition function and correlation functions

With the transfer matrix T constructed, we have access to
statistical properties of the model on a L�L� torus by means
of the partition function, which reads

Z�u,v,zD� = Tr�TL�� = 

C1,C2. . .,CL�

TC1,C2
¯ TCL�

,C1
.

Internal energy and specific heat. From the TM elements,
one also gets the internal energy of the system:

�E	 = −
1

Z



C1,C2. . .,CL�

TC1,C2
¯ TCL�

,C1
.

ln�TC1,C2
¯ TCL�

,C1
� .

We computed the specific heat per site, cv= 1
LL�

d�E	 /dT,
by a numerical differentiation of �E	 with respect to the in-
verse of the coupling strength. For the calculations of Sec.
IV, �E	 was computed exactly for L=4,6 ,8 wide systems
�with L��L so that cv does not depend on L��. For wider
systems L=10,12, �E	 was estimated by searching the lead-
ing TM eigenvector and evaluating from it the energy per
row �E	 /L� �the consistency of this method, valid in the limit
of infinitely long systems, was checked for L=8 first�.

Correlation functions. Correlation functions are computed
by means of TM iterations. Dimer-dimer correlations, for

critical
dimer
liquid

(columnar)
solid

u

0

transition
likely 1st order

v/u
1

FIG. 13. �Color online� Schematic projective phase diagram of
the dimer model on the triangular lattice �zD=1, line E of Fig. 3� in
terms of the interaction u and interaction anisotropy v /u.

TABLE I. Dimensions of the TM restricted by translation invari-
ance to symmetry sectors of wave vectors q=0 and q=� and by
topological invariance to even and odd sectors for system widths L
up to 14.

L dim�Te�q=0�� dim�Te�q=��� dim�To�q=0��

8 424 421 410

10 2980 2929 2954

12 22218 22207 22150

14 170980 170665 170822
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two dimers with a specified orientation and relative position
r, are obtained as the ratio over the partition function Z of a
modified partition function Z� taking into account only the
2D configurations where these two dimers are present. Math-
ematically, a projector P onto the corresponding 1D configu-
rations is inserted in the matrix product in Z� at positions
corresponding to both dimers:

C�r� =
Z�

Z
=

Tr�PTr�PTL�−r��
Tr�TL��

,

where r� is the projection onto the � axis of the relative
position r. Even if we do not discuss them in the body of the
text, monomer-monomer correlations are also accessible via
TM calculations. In TM language, the insertion of a mono-
mer in a given row requires one to replace the TM by a
modified matrix T� which forbids the occupation of links
emerging from this site �this involves a change of topological
sector�. For both dimer-dimer and monomer-monomer corre-
lations, we checked that in the noninteracting case, the exact
results of Ref. �11� are recovered.

3. Analysis of real-space correlations

When the system is in a critical phase, conformal trans-
formation techniques �27� can be used to analyze the real-
space decay of correlation functions on a L-wide infinite cyl-
inder. Consider the correlation of two dimers �or monomers�
located at a relative distance r� along the cylinder axis. If the
exponent of the infinite-plane power-law correlations is 2�,
correlations on the cylinder scale as

C�r�� � �cosh2�r�

L
� − 1�−�

,

which can be approximated, for distances much larger than
L / �2��, by an exponential decay with a correlation length
L / �2���. We checked our calculations in the noninteracting
case on the square lattice for a L=6 cylinder. We found a
correlation length =1.02�2�, close to the expected �thermo-
dynamical limit� value L / �2�d1,0�=3/��0.95. The small
discrepancy can be attributed to the 1/r4 correction present
in the correlation function �15�. Repeating the same calcula-
tions for monomer correlations, we extracted from the expo-
nential decay a critical exponent d0,1�0.26, in good agree-
ment �for such a small L value� with the exact value 1/4.

4. CFT analysis of largest TM eigenvalues

The CFT analysis is also useful to compute the central
charge c, as well as the scaling dimension of the dimer d1,0
and monomer d0,1 operators, from the size dependence of the

leading TM eigenvalues �12�. The central charge is estimated
by the L dependence of the largest eigenvalue �0 of T,
which is directly connected to the free energy per site f0, in
the limit of an infinitely long system:

f0 = −
1

L
ln��0� = f* −

�c

6L2 + o 1

L2� .

In practice, we add a 1
L4 term to the previous fitting expres-

sion �13�, which is justified by symmetry reasons and im-
proves the agreement between raw data and the fitted expres-
sion of f0. Estimating c thus requires to perform a fit of f0
with at least three values of L. The size of the TM is a
limitation to the number of sizes accessible; nevertheless,
one can use the already mentioned topological and transla-
tion invariance to adress larger sizes. Indeed, one can assert
by symmetry reasons and check numerically that the leading
eigenvalue of the TM is found in the q=0 even sector. The
scaling dimensions of dimer and monomer exponents are
determined from the largest eigenvalues in other symmetry
sectors �12�:

−
1

L
ln�0

e�q = ��
�0

e�q = 0�
� =

2�d1,0

L2 + O 1

L4� ,

−
1

L
ln�0

o�q = 0�
�0

e�q = 0�
� =

2�d0,1

L2 + O 1

L4� .

This allows us to determine c and de,m �with �e+m=1�� from
the power method �28�, requiring less memory than for a full
diagonalization. To minimize finite-size effects on c and de,m,
we use different estimates for these quantities. Each estimate
is the result of a fit with either three �for c� or two �for de,m�
consecutive values of L /2. In this way one obtains estimates
c�L−4,L� and de,m�L−2,L� �for L�14�. The finite-size ef-
fects on these estimates become smaller when increasing L;
in order to obtain more reliable values, we make extrapola-
tions of these estimates, assuming that they scale as �13�

c�L − 4,L� � c* +
K

�L − 4�2 ,

de,m�L − 2,L� � de,m
* +

K�

�L − 2�2 .

Such estimates and their extrapolations are displayed in Figs.
2, 4, and 6. In general, the c* extrapolations were done with
estimates c�8,12� and c�10,14�, while for de,m

* extrapolations
we used the estimates de,m�8,10�, de,m�10,12�, and
de,m�12,14�. The difference between the extrapolation and
the closest estimate �the one with the largest L� gives the
order of magnitude of the error.
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